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Exact algorithm for sampling the two-dimensional Ising spin glass
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A sampling algorithm is presented that generates spin-glass configurations of the two-dimensional Edwards-
Anderson Ising spin glass at finite temperature with probabilities proportional to their Boltzmann weights.
Such an algorithm overcomes the slow dynamics of direct simulation and can be used to study long-range
correlation functions and coarse-grained dynamics. The algorithm uses a correspondence between spin con-
figurations on a regular lattice and dimer (edge) coverings of a related graph: Wilson’s algorithm [D. B.
Wilson, Proceedings of the Eighth Symposium on Discrete Algorithms (SIAM, Philadelphia, 1997), p 258] for
sampling dimer coverings on a planar lattice is adapted to generate samplings for the dimer problem corre-
sponding to both planar and toroidal spin-glass samples. This algorithm is recursive: it computes probabilities
for spins along a “separator” that divides the sample in half. Given the spins on the separator, sample con-
figurations for the two separated halves are generated by further division and assignment. The algorithm is
simplified by using Pfaffian elimination rather than Gaussian elimination for sampling dimer configurations.
For n spins and given floating point precision, the algorithm has an asymptotic run-time of O(n*?); it is found
that the required precision scales as inverse temperature and grows only slowly with system size. Sample
applications and benchmarking results are presented for samples of size up to n=128, with fixed and periodic

boundary conditions.
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I. INTRODUCTION

Materials with quenched disorder, such as spin glasses,
can have extremely long relaxation times so that laboratory
samples exhibit nonequilibrium behavior over many decades
in time scale [1-3]. Spin-glass materials exhibit “aging,” a
slow evolution in the magnetic response, for example, and
nonequilibrium phenomena such as “rejuvenation,” where
changes in the temperature can undo the effects of aging. As
these phenomena take place over time scales much longer
than the microscopic time scale for individual spins, these
effects must be due to the collective behavior of many spins.
As analytical work is very difficult in disordered materials
[4,5], numerical simulations have been important in building
a picture of the low-temperature phase of models of disor-
dered spin systems (e.g., [6-8]).

Numerical work using direct local Monte Carlo simula-
tion of the dynamics and equilibration [9] indicate that mod-
els such as the Edwards-Anderson model [10] possess the
long relaxation times that are at least necessary to start to
explain these behaviors. Given the direct correspondence be-
tween simulation time and “experimental” time, though, the
same long relaxation times that one is seeking to understand
make such simulations very difficult even though very long
simulation times are used [9].

Various alternate approaches and approximations have
been developed to address the difficulties of direct simula-
tion. These approaches can be used to determine both the
equilibrium state and how this state is approached. When the
primary concern is the understanding of the equilibrium
state, many studies have sought to find the ground state of
given samples, as many of the properties of the low-
temperature phase are believed to be given by the properties
of the ground state (such as the sample-to-sample fluctua-
tions in the ground-state energy or the length-dependent

1539-3755/2009/80(4)/046708(16)

046708-1

PACS number(s): 05.10.—a, 75.10.Nr, 02.70.—¢

domain-wall free energy) [11-15]. This direction of research
is based on developing faster exact methods and accurate
heuristic methods for finding the spin configuration that
minimizes a Hamiltonian with fixed random couplings. The
search for a ground-state configuration is closely connected
with combinatorial optimization methods developed in com-
puter science although finite-dimensional spin glasses addi-
tionally lend themselves to real-space techniques inspired by
the renormalization group [11]. Equilibrium quantities at fi-
nite temperature, such as the partition function and density of
states, can be computed for the two-dimensional (2D) Ising
spin glass. The approach to the ground-state and nonequilib-
rium properties can then be studied by direct simulation or
possibly heuristically by real-space blocking of the degrees
of freedom [16].

We present here an algorithm that extends these ap-
proaches to allow for exactly sampling the configurations of
the disordered Ising model on 2D lattices without the use of
Markov chain Monte Carlo (MCMC). For n spins, this algo-
rithm takes O(n*?) steps and in practice has a running time
that grows only somewhat faster, i.e., somewhat more rap-
idly than L3, at fixed temperature. As lower temperatures 7'
require more precise arithmetic, the running time grows
roughly as 7-!. The algorithm is based on Wilson’s algorithm
for sampling planar dimer models [17]. We use a mapping of
the Ising spin-glass model to the dimer problem for the deco-
ration of the graph dual to the spin lattice [18,19]. We take
advantage of the regular structure of the square lattice to
simplify the algorithm and also modify the matrix algebra of
Wilson’s algorithm so that the calculation is both simpler and
more numerically stable.

This algorithm for sampling provides an opportunity to
study many outstanding questions for 2D spin glasses in
much more detail than possible with MCMC computations.
For example, the dependence of replica overlaps on tempera-
ture and sample size can be directly computed. Correlation
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functions are easily found: these can be used to study the
decay of correlations at finite temperature in both Gaussian
and *J models, which differ in some aspects at 7=0. The
power law decay of spin-spin correlations are presumed to
behave as =7 up to the correlation length: how 7 depends on
model and is related to thermodynamic quantities such as the
heat capacity is still not completely understood [20].

A. Model

The Edwards-Anderson (EA) spin-glass model is a proto-
typical model for disordered materials. The EA spin-glass
model has the Hamiltonian

HAS) == 2 Jysis,, (1)
(i)

where the J- ={Jl~j} are sample-dependent couplings. For ex-
ample, the J;; can be chosen independently and randomly
from a Gaussian distribution or from a bimodal distribution
Jy=*1 (the =J model), with mean zero and variance 1 in
either case. These couplings connect two neighboring spins,
located at points i and j in the sample. The spins s; are Ising
spins, i.e., each s;=* 1. We will only be able to exactly
sample in the 2D case. We will study the square lattice of
spins in both the case of periodic boundary conditions, where
the bottom row of spins is connected to the top and the left
column to the right column, and the case of fixed boundary
conditions, where the spins on the boundary of the square
sample are fixed. A spin configuration {s;}=S € S is an as-
signment of spin values s; to each of n sites 7; there are
2" possible spin configurations in the state space S. A
ground-state spin configuration Sgg that minimizes the
Hamiltonian can be found in polynomial time using a
minimum-weight perfect matching algorithm if the edges (ij)
which connect nearest-neighbor sites and the sites {i} form a
planar graph [18]. At positive temperature T=8"", the parti-
tion function for a given realization of disorder [J is
Z=2gexp[-BH AS')] and the probability of observing
a spin state S in a sample defined by J is PJ(S):Z}l
exp[—BH AS)] in equilibrium.

B. Exact computation of the partition function

It has long been known that the partition function of the
2D ferromagnetic (J;;= 1) Ising model with no external mag-
netic field can be found exactly by computing the determi-
nant of a matrix derived from the spin lattice. One type of
construction of this determinant uses a sum over sets of
closed loops on the spin lattice: these loops represent the
terms in a high-temperature expansion of the partition func-
tion. The first published construction of these type of loops is
that of Kac and Ward [21], who directly count the polygonal
loops. A technique for constructing the relevant matrix for
the determinant technique is to map the Ising model onto a
dimer covering problem on a decorated lattice G [19,22],
where the spins in the original lattice are replaced by a sub-
graph, a Kasteleyn or Fisher city (a dimer covering is a set of
edges in the graph such that every node belongs to exactly
one selected edge). The Kasteleyn matrix K of the graph G
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for the dimer problem describes the connections between
neighboring nodes. This square matrix, which is indexed by
a numbering of the nodes of G, has nonzero entries at loca-
tions that are indexed by the two ends of a connection be-
tween the nodes. Counting the partition function for dimer
coverings is equivalent to computing the Pfaffian of the
Kasteleyn matrix, where the Pfaffian in this case is a square
root of the determinant. These Pfaffian techniques have been
used for the exact solution of the pure Ising model in the
thermodynamic limit [19,21,22] and, e.g., for computing the
density of states in finite samples. Beale [23] rewrote the
Pfaffian in a form that allows for faster direct computation of
the partition function in a pure ferromagnetic model. As the
derivation of the correspondence between the partition func-
tion of the Ising model and the determinant or Pfaffian meth-
ods for finite samples does not rely on a homogeneous cou-
pling constant J;;, these methods can also be applied to spin-
glass samples in two dimensions. This correspondence has
thus been used to compute directly the partition function
(and density of states) for disordered samples [24,25]. Pfaff-
ian techniques can also be used to compute degeneracies and
correlation functions in the *J-model (where couplings are
all of the same magnitude but randomly ferromagnetic or
antiferromagnetic between neighboring spins) [26] and has
been used to study the heat capacity of this same model at
low temperatures (e.g., see [27]).

C. Review of configuration sampling

Being able to compute the partition function (and often
the density of states as a by-product) is useful in computing
such quantities as domain-wall free energies, sample-to-
sample fluctuations in the free energy, specific heat, and
other global quantities. By computing the partition function
for fixed relative spin configurations, one can also calculate
correlation functions [26]. But for many purposes, such as
faster computation of correlation functions, the organization
of states in a spin glass or for use in a heuristic for studying
the dynamics of disordered materials [16], it is useful to be
able to generate sample configurations, given a realization of
the disorder. For sampling the equilibrium behavior of the
system, it is sufficient to generate such samples with their
proper Boltzmann probability P #S). For nonequilibrium dy-
namics, such sampling can be used in patchwork dynamics,
which is closely related to the renormalization approaches to
nonlocal dynamics used in multigrid Monte Carlo methods
and hierarchical genetic methods [11,28].

Heuristic sampling, where there is no proof of exactness,
is typically done using the MCMC method. In MCMC meth-
ods, local probabilistic dynamics that obey detailed balance
are used to update the spins. At long times, the probability of
observing a configuration should be the equilibrium prob-
ability. The equilibration times using this method can be pro-
hibitively long, though, especially in glassy systems such as
the 2D spin glass [29]. Some faster Monte Carlo methods
have been developed for the 2D spin glass at low tempera-
ture [30], but with any such method there is also a question
of how to test whether equilibrium is achieved with sufficient
accuracy. It is of use to have criteria to confirm converges of
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the Markov chain to the equilibrium distribution. Propp and
Wilson [31] proposed a technique for generating exact
samples with MCMC by “coupling from the past” (CFTP).
In this framework, it is possible to verify that the system has
converged from all possible initial conditions to a single
state, at which point it is exactly in equilibrium. This ap-
proach often makes use of a natural partial ordering of con-
figurations that is used to guarantee convergence. For disor-
dered models, there is often no such obvious partial ordering
of the states that ensures convergence of CFTP. Chanal and
Krauth [32] nevertheless succeeded in applying CFTP to the
Ising spin glass using a coarse-grained organization of the
states: at first, all states are possible; as the Markov chain is
developed and the number of states is reduced by coupling,
the constraint on allowed states is further coarse grained,
until a single whole sample state is left. But the coupling
time (time for convergence to a single sample) is still of the
order of the equilibration time, which of course can be very
long at low temperatures.

Sampling with the exact Boltzmann weights has been
implemented and applied to the Migdal-Kadanoff (MK) lat-
tice, which is not a finite-dimensional lattice, but is used to
approximately represent finite-dimensional lattices. As the
MK lattice has a hierarchical structure, the spin configura-
tions can be summed over successive scales, starting from
the smallest, to compute the partition function and the rela-
tive partition functions can be used to sample the spins. This
was done in Refs. [33,34] to study chaos and spin overlap on
hierarchical lattices.

Exact sampling of configurations can always be carried
out in time polynomial in the size of the sample if the parti-
tion function may be calculated efficiently. One direct but
somewhat slow method is to assign a single spin at random
and then compute the partition function conditioned on as-
signment of individual neighboring spins; this requires n
=L¢ computations of the partition function for O(n) spins.
Such a technique is mentioned as a possibility, for example,
in Ref. [35]. As the partition function can be computed in
O(n*?) steps, this would require O(n>?) arithmetical steps.
There are other methods for carrying out exact sampling,
however.

Exact sampling of ferromagnetic Ising systems (in any
dimension) may be performed in polynomial time [36]. This
technique works in the Fortuin-Kasteleyn cluster representa-
tion and successively removes bonds and spins through a
reduction technique. A related problem, sampling configura-
tions of dimer coverings on a planar bipartite lattice, has an
elegant sampling technique [37,38], which exactly maps the
statistical mechanics on an L XL lattice to an (L—1) X (L
—1) lattice with modified weights on the edges. Other tech-
niques for calculating the exact partition function of the 2D
Ising spin glass, such as the Y-A technique of Loh and Carl-
son [39], are quite similar in spirit to the dimer covering
algorithm. This technique also involves an efficient recursive
reduction in any planar graph to a smaller graph, but when
frustration is present the intermediate reduced bond strengths
can become complex, which complicates possible sampling
techniques.
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D. Overview of algorithm

We now outline the crucial points for our application. In
two dimensions, there is a one-to-one correspondence be-
tween spin configurations of the Ising model with arbitrary
couplings and dimer configurations on a decorated version of
the dual lattice. The individual spin and dimer configurations
have the same energy so the corresponding configurations
have the same Boltzmann weights Z~! exp(-BE), where Z
and E are the partition function and configuration energy for
either the dimer or spin problem. We can therefore generate
sample spin configurations by sampling among dimer con-
figurations and mapping them to the spin representation.
Note that the traditional method for calculating the partition
function is a mapping between the primal lattice and a dimer
model: a dimer configuration, which defines loops in a high-
temperature expansion of the partition function, does not di-
rectly map onto a unique spin configuration. Using the dual
lattice, however, allows for such a map.

Wilson’s algorithm may be used to sample dimer configu-
rations efficiently for any planar lattice so efficient sampling
of the Ising model can be carried out on general planar
samples. One requirement for Wilson’s algorithm is an effi-
cient method to recursively subdivide the lattice; this task is
straightforward on a regular lattice: we subdivide or separate
the sample by choosing two adjacent rows or columns of
spins. The spins on these two lines are the separator sites for
the spin lattice. These separator spins are then assigned by a
sequence of weighted choices. The weights for the choice of
these spins are found, in essence, by computing the needed
correlators between each pair of spins situated on these two
lines. Once the spins on the separator have been chosen and
fixed, this division and sampling is repeated on finer and
finer spatial scales, using the solved spins as fixed boundary
conditions for the subsamples. Besides allowing for recur-
sive assignment of spins on the separators, this nested dis-
section is used to efficiently organize the needed sparse ma-
trix computations.

We have also simplified the algorithm significantly by us-
ing Pfaffian elimination rather than Gaussian elimination.
Pfaffian elimination was used by Galluccio et al. [25] in
computing the partition function, but it can also be used to
advantage in sampling. We use a sparse matrix representation
that greatly reduces the amount of space and time needed:
due to the regular nature of the lattice, all of the primitive
operations can be explicitly precomputed and then applied to
many distinct samples of the same size. We find that the
number of relevant matrix elements [out of the full O(n?)
potential elements] that are “visited” during the computation
scales approximately ~»n and that the number of operations
obeys the expected growth ~n32.

Although the form of the algorithm that we use is based
upon and parallels Wilson’s algorithm, we present the
method in detail here. We do this in order to review the
method itself, emphasize the relationship between matchings
and the Ising model, present our form of the matrix algebra
that we use for sampling dimer matchings, and describe sam-
pling for non-planar graphs, such as used for periodic bound-
ary conditions.
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Results of applying the sampling algorithm to an individual 2D Ising spin-glass sample, for temperatures 7=0.5,

0.2,0.08,0.02, for a single Gaussian spin-glass sample with fixed boundaries. The images show the variability of the spin assignments (top)
and of the domain walls (bottom) over a range of temperatures, in a sample with n=1267 variable spins surrounded by a layer of fixed spins.
At least 240 samples were generated at each temperature. The grayscale values indicate the probability of a given spin being fixed (upper
row) or of neighboring spins being fixed relative to each other (lower row). For spin assignments, the darkest colors indicate that the spin
is equally likely to be up or down, while light colors indicate that the spin occurs with a single alignment in nearly all sampled configura-
tions. These alignments result from correlations with the fixed boundary spins. For the domain walls displayed in the lower row of images,
the lines indicate the probability of relative domain walls between two configurations: the darkest lines indicate the bond dual to that domain
wall has a 50% chance of opposite or equal relative orientations; where there is no line separating two spins (or only a very light one), the
two spins have a very high probability of a single relative orientation, either aligned or opposite. Specifically, the bond satisfaction variance
#; j(1=pu; ;) is plotted along each dual edge, where ; ; is the frequency of the J;;s;s; being positive. Note that as T decreases, the frequency
of specific droplet excitations, outlined by domain walls, can either increase or decrea%e reflecting the sensitivity of the configurations to
temperature. This can be seen, for example, in two of the regions that are active at 7=0.02, the approximately 20 X 20 region in the far upper
left and the approximately 30 X 60 region at the center right: the spins in the former become more fixed as temperature decreases while the

spins in the latter region become more variable (darker) when the temperature is decreased from 7=0.08 to 7=0.02.

E. Implementation results

As one of the primary motivations for the development of
our algorithm is its potential use in patchwork dynamics
[16], we test our algorithm by timing it in this context, ran-
dom patches of a sample with Gaussian bonds, where the
variance of the couplings J;; is unity and the mean coupling
J;j=0. Our code was developed with the possibility of using
different data types as the matrix elements in the calculation.
Specifically, we test the algorithm using double precision
numbers, floating point numbers of arbitrary precision, and
with exact rational Boltzmann weights. As the weights in the
computation can vary over a large range and a Pfaffian elimi-
nation technique is used to cancel out matrix elements, simi-
lar to Gaussian elimination, the algorithm can produce un-
stable results using the floating point types if proper care is
not taken. The likelihood of an instability increases with in-
creasing system size and with lower temperature. In trying to
balance the stability and accuracy of the sampling against the
running time, we determine the arithmetical precision needed
to reliably sample a configuration. Sample results for con-

figurations are displayed in Fig. 1. Details of the precision
requirements and example running times are given in Sec.
I E.

II. MAPPING THE ISING MODEL TO A DIMER MODEL

In order to sample Ising spin configurations via the sam-
pling of dimer configurations, one requires a one-to-one cor-
respondence between the Ising spin configurations S on a
given lattice and the dimer covering configurations M on a
related graph G. Such mappings have been constructed for
application to the more straightforward problem of comput-
ing the partition function. These mappings link the problem
of computing Z; to a weighted enumeration of all perfect
matchings M on G. A single perfect matching on a graph
G=(V,E), where V are vertices (nodes) and E are edges
connecting pairs of vertices, is a choice of a subset of edges
M CE, the matching or dimer covering, such that every ver-
tex belongs to exactly one edge in M (see Fig. 2). The gen-
erally established procedure for constructing a mapping be-
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FIG. 2. (Color online) A depiction of the correspondence be-
tween domain-wall loops for an Ising spin system and dimer match-
ings on the decorated dual lattice G. (a) A spin system with fixed
boundary conditions; an up arrow at location i indicates s;=+1 and
a down arrow indicates s;=—1. The dual lattice G, is indicated by
the lines connecting the dual nodes. (b) A Fisher city replacement.
Each dual lattice node is expanded to a Fisher city, a set of six
nodes composed of two linked triangles, to generate the decorated
lattice. For work on the square lattice, the bond strengths are set to
be w(e;)=0 inside the city, and the bond strengths between the
cities, indicated here by the notation w,;, d=0,1,2,3, are set ac-
cording to Eq. (3). (c) An example dimer covering (i.e., perfect
matching) M on the decorated graph G. The thicker (also red) bonds
with circular ends indicate edges in M. The domain walls, com-
posed of dimers that connect distinct cities, are indicated by dashed
lines. (d) When the cities are contracted out from G, the loops on
G, remain. Given this choice of dimer covering M, the spins that
are inside the domain walls are flipped to create the new sampled
configuration.

tween spin configurations and perfect matchings is to
identify closed loops on some relevant graph, G,, where G,
is either the primary grid (the spin lattice) or the dual lattice
(the lattice of plaquettes). The partition function, originally a
sum over spin configurations, can be represented as a
weighted sum over choices of loops in G. This summation
over loops can be carried out by summing over matchings on
a graph G, constructed by replacing the nodes of G, with

PHYSICAL REVIEW E 80, 046708 (2009)

either Kasteleyn or Fisher “cities” [19,22], subgraphs con-
structed of a few nodes and edges. Perfect matchings on this
decorated lattice G then have the property that an even num-
ber of the covered edges are incident upon any given city.
The edges of a matching M that connect cities are therefore
even at each city; contracting the cities back to single points
then gives the city-connecting dimers that compose the loops
in G, (see Fig. 2).

One mapping between spin configurations and sets of
loops is based on a high-temperature expansion of the parti-
tion function of the Ising model, where Gy, is the spin lattice
and the loops, composed of bonds connecting nearest-
neighbor spins, represent individual terms in the expansion
of Z; in powers of exp(—f/;;). The direct replacement of
each Ising spin with a “city” gives representation of loops by
a dimer matching [19,22,25]. The weight of dimer configu-
rations can then be summed using Pfaffian methods [19] giv-
ing, for example, the Kasteleyn solution of the Ising model.
However, there is no direct correspondence between indi-
vidual sets of loops and spin configurations.

Alternately, a mapping to G can be defined by taking G,
to be the dual lattice [18,40]. This mapping, in contrast with
the approach of decorating the original lattice, allows for
direct sampling of Ising spin configurations. The loops on the
dual graph represent a loop expansion in terms of domain
walls. The expansion in domain walls if expressed relative to
the ground state would be a low-temperature expansion.
More generally, the summation is over relative domain walls
between a reference configuration and any other configura-
tion. A direct correspondence between spin configurations
and dimer configurations therefore exists as domain walls
uniquely define a spin configuration, given a reference con-
figuration, up to the possibility of a global spin-flip symme-
try.

Let R={r;} be a reference configuration of Ising spins r;
= * 1. We emphasize that this choice is completely arbitrary:
it need not be a ground state. For convenience R can be a
configuration with all spins up or a previously sampled con-
figuration. For a given sampling S of the spin configuration,
S={s;}, the loops of dual edges that separate spins i and j
with r;s;# r;s; define the relative domain walls between R
and S. (For the ferromagnetic Ising model, one usually takes
r;=1 so that the domain walls separate regions where s;,=1
from regions where s,=—1.)

In this reference configuration, for each pair i,j, define
R;=ryr; as the reference satisfaction of bond i,j. Then, for
this fixed R;;, we can simply rewrite the Hamiltonian as

HJ(S)=_2Jij(sisj_Rij+Rij)=HR+HGv (2)
(i)

with Hg==2J;;R;;, the energy of the reference configura-
tion and Hg=~2;J;;(s;5,—R;;), which will be rewritten as
the Hamiltonian of the corresponding dimer model is the
energy of the domain walls between the configurations R and
S. Note that Hjy is the same for all spin configurations but
must be tracked if comparing the effects of changing bound-
ary conditions or comparing with ground-state energies, for
example.
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FIG. 3. The node indexing and edge orientations within a Fisher
city (left) and the corresponding elements of the 6 X 6 submatrix of
the Kasteleyn matrix K (right). The numbering of nodes is shown
for the first city listed in the dual lattice; subsequent cities have
multiples of 6 added to their indices. In the case of the square spin
lattice (indicated by the outer square bonds on the original spin
lattice), all nonzero K elements, including d, are set to unit magni-
tude. The labeling of the 0—2 and 1—2 edges indicate how the
strengths can be modified in the case of the triangular lattice: in this
case, one can set d=exp[—Bw(e,)] to account for the diagonal bond
e, perpendicular to the 2— 3 edge. The Kasteleyn matrix has row a
and column b indices a,b=0,...,5.

Let the decorated graph G=(V,E) have the vertex set V,
which has size |V|=2N, N being the number of dimers in a
perfect matching of the vertices, and the edge set E={e,,}
where each edge connects two nodes, eq,=(q,r), for some
q,r € V. Then, given a set of relative domain-wall loops, the
dimer configuration is uniquely defined by selecting dimers
that connect cities and cross bonds Jij where 587 Ryj i.e.,
that overlie the domain walls in G, and the subsequent
unique choice of matching for dimers internal to the cities.
Choosing an energy function w(e) for edges in E with
w(e,,)=0 for bonds in the cities and

W(e) :2JURU (3)
for dual edges e crossing bonds between spins i and j gives
He(M)= 2 w(e) (4)

eeM

as a consistent energy function for matching configurations
in M. The Ising model and matching model can therefore be
made equivalent, up to a global energy shift H.

Because each dimer configuration corresponds to a spin
configuration with the same energy, picking a sample from
the dimer model with the correct probability directly pro-
duces a corresponding spin configuration that has the same
probability of occurring. We chose to use Fisher cities for
this work, instead of Kasteleyn cities [19], as they are sim-
pler to sample using Wilson’s algorithm on a square lattice.
Also, by modifying the weights of the Fisher cities, we can
also very easily change the weights to simulate triangular
lattices (see Fig. 3).

Matchings and the Kasteleyn matrix

Given the mapping between matchings using dual lattice
cities and spin configurations, we now briefly review the
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correspondence between dimer matchings and Pfaffians. Ex-
tensive discussion and examples can be found in, for ex-
ample, Refs. [19,35,41]. As a mathematical object, the Pfaff-
ian Pf(A) can be defined for general 2N X 2N antisymmetric
square matrices A={a,,|q,r=0,...,2N-1}, a,,=-a,, by a
restricted sum over permutations P=p(f) of the indices
t=0,1,...,2N-1,

Pf(A)= X

P ordered

(-1)"Pq (5)

aqzrz o an’N’

i
where o(P) is the sign of the permutation from the sequence
0,...,2N—-1 to the sequence q;,ry, ... ,qy,y and the restric-
tion to ordered P is to rearrangements where g, <r;, for all
1=k=N and q,<g,<---<gy. We also have that [Pf(A)]
=det(A).

It turns out that summing over permutations with these
two restrictions is exactly the way to sum over dimer cover-
ings for a planar graph G if the matrix elements of A are
chosen properly. A matrix whose Pfaffian is Z,,
=3 e mexpl-BH(M)] is the Kasteleyn matrix K. This ma-
trix has entries K(g,r), with ¢,r=0,...,2N—1, satisfying
IK(q.7)|=x,,, where x,,=exp{~Bnle(g, ]}, and wle(q.r)]
is the bond strength associated with edge e(q,r). Directions
for the edges are then chosen so that all loops in G which
enclose an even number of nodes include an odd number of
counterclockwise edges [19]. The matrix entry K(q,r) is set
to be x,, if an edge is oriented from g to r, otherwise it is set
to be —x,,. This convention ensures that each valid dimer
configuration has positive net weight. The Kasteleyn matrix
is thus a weighted version of a directed adjacency matrix.
Using these conventions and weight assignments gives [19]

PiK)= > [l x.=2u=2;'z,. (6)
MeMeeM

When decorating G, with cities to create G, the edges inter-
nal to the cities must be assigned orientations. An example of
a Fisher city with the correct directionality and the corre-
sponding submatrix is shown in Fig. 3. The orientation of the
connections between the cities are from the four node in one
Fisher city to node O in the city to the right and from node 5
in a city to node 1 in the city in the row above. To simplify
notation for the rest of the paper, we will use Z to indicate
Zg.

Established analytical and numerical techniques can be
used to compute Pf(K)=Z. As these numerical techniques
require a number of mathematical operations polynomial in
the size of the lattice, specifically growing as ~n*?, the ther-
modynamic properties can be efficiently computed. The
number of bits needed for exact computations grows with n
so that computing, for example, the exact partition function,
written out as a polynomial in exp(—B) of a spin-glass
sample for the *J model, where J;;= % 1, requires O(n’?)
primitive fixed-word-length operations [25].

We extend this correspondence to carry out sampling of
spin configurations by applying Wilson’s algorithm. Partial
diagonalization of the Kasteleyn matrix generates correlation
functions for the choice of the dimers in the matching repre-
sentation. These correlations are between dimers on a sepa-
rator of the sample, which divides the sample into two nearly
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equal places. These correlations functions include the prob-
ability of choosing any dimer in a matching so it is straight-
forward to determine whether a single dimer is selected in a
random matching. The insight developed by Wilson was to
update these correlations as dimers are chosen: the effects of
partial assignment are propagated inductively to correlations
between other dimers, allowing many dimers to be assigned
without another factorization of the full Kasteleyn matrix.
Once the dimers have been selected on a separator, the two
pieces are then solved recursively using their own separators.

III. WILSON’S ALGORITHM

In this section, we describe our implementation of Wil-
son’s algorithm as applied and adapted to sampling configu-
rations of the Ising spin glass. Wilson’s algorithm samples
dimer coverings: we map the Ising problem to the dimer
sampling problem using the mapping described for the dual
lattice in Sec. II. Wilson’s algorithm uses a “nested dissec-
tion” [42], i.e., a recursive subdivision of the sample, where
each subdivision of n spins is into two pieces of similar size
separated by a line of vertices of size 0(\3“;), for efficiency.
Such a nested dissection was used by Galluccio et al. [25] to
compute the full expansion of the partition function of the
*+J spin glass as a polynomial in exp(—/), using the high-
temperature expansion formulation of the partition function.
This dissection can be phrased using either a dimer descrip-
tion based on a matching of the decorated graph on the dual
lattice or using spins. The algorithm is necessarily imple-
mented in terms of the former language, but for clarity, it is
also convenient to describe it using the latter language, i.e.,
based on the spins on the original lattice.

Consider a subsample U of Ising spins {s;|i € U}, possibly
with external fields at the boundary (corresponding to fixed
spins bordering U; this graph is still planar). To divide this
sample into two independent samples, U’ and U”, a set D of
spins is chosen as a spin separator so that

U=U0'UDUU" (7)

and no bonds connect spins in U’ to spins in U”. We choose
this spin separator to be composed of two parallel lines of
spins so that a line of nodes in the dual lattice is contained
between the two lines of spins.

It turns out that Wilson’s approach provides an efficient
way to assign spin values along this separator, such that the
spins are selected with the correct probabilities. That is, let
such a spin assignment on D be Sp={s,=* 1|k e D}. The
spin at site i for a choice Sj, is also written as S;(i). One
requires that the probability that the algorithm will generate a
particular choice Sy, is just equal to the probability P AS|Sp)
that the properly weighted choice of all spins will yield that
particular assignment of spins on the separator D, i.e., that

P(SD) = [Z(U)]_l E exp[_ IBH(SU)], (8)
SUlsU(i)=S1)(i),VieD

with Sy, being a particular configuration of the spins in U, the
sum indexing all possible spin assignments consistent with
the choice S, and with Z(U):ESUexp[—BH(SU)] the parti-
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tion function for U. The remarkable property of the algo-
rithm to make such a selection implies that this procedure
may then be repeated on the remaining unassigned sub-
systems U’ and U” independently of one another.

We can select the assignment for the spins in D by sam-
pling from the dimer assignments for all the nodes in A,
where A is the set of all nodes in G that lie inside of D and
the connecting edges contained within D. This set of nodes A
is what is referred to as the separator in Wilson’s work on an
algorithm for random dimer assignments.

In order to outline of our version of the algorithm for
assigning matchings in A, one needs the notion of Pfaffian
elimination [25]. Let K be a 2N X 2N skew-symmetric ma-
trix, i.e., K(g,r)=—K(r,q) for 0=¢q,r<2n-1. A cross op-
eration between ¢ and j is the addition of a multiple of row ¢
to row r and the same multiple of column g to column r. If
this multiple is given by the factor «, the cross operation on
K can be written as

where L(a,q,r) is the lower triangular matrix [+ ad, .. The
matrix &, , has all entries zero except for a unit entry in row
g and column r. It turns out that the value of Pf(K) is un-
changed by cross operations as L has unit determinant and
Pf(BKBT)=det(B)Pf(K) for general B [43]. Pfaffian elimina-
tion is the application of multiple cross operations to sim-
plify the matrix. This factorization via Pfaffian elimination
has the goal of making the Pfaffian trivial to compute; the
simplest form of a skew-symmetric matrix has nonzero val-
ues only in the even row superdiagonal elements,

N-1
Y=2 yeol, (10)

=0
where o) is just the matrix that is nonzero except for the

(2¢,2€+1)st entry, which is set to 1, and the (2€+1,2¢€)st
entry, which is set to —1. In Pfaffian elimination, then, the v
factors a,, and the cross operation locations g,,, r,, are all
chosen sequentially so that

Y=LKL, (11)

with L=Il"_,L(«,,,q,,.1,,) and Y is of the form in Eq. (10).
The needed choices of «,,, g,,, and r,, are discussed in more
detail in Sec. III B.

As the factorization of K given by Pfaffian elimination
leaves the Pfaffian invariant

Pf(Y) = Pf(LKL") = det(L)Pf(K) = Pf(K), (12)

the Pfaffian of the Kasteleyn matrix and hence the partition
function can be directly found by multiplying the even su-
perdiagonal entries of Y.

This elimination procedure resembles the application of
Gaussian elimination to compute the LU factorization of a
matrix A, with A=LU where L is lower triangular with unit
elements on the diagonal and U is upper triangular. The
product of the diagonal elements of U gives det(A); here
Pf(K) is the product of the even row superdiagonal elements
of Y. Factorization via Pfaffian elimination maintains
the skew symmetry of the partially factorized

046708-7



CREIGHTON K. THOMAS AND A. ALAN MIDDLETON

PHYSICAL REVIEW E 80, 046708 (2009)

(a)

(b)

FIG. 4. (Color online) An example of the nested dissection and the Kasteleyn matrix K for a 6 X 6 spin lattice sample surrounded by an

outer layer of fixed spins. (a) The set of 8 X 8 Ising spins sit on the sites of the light gray lattice of bonds of strength J.

ij» where the diagonal

bonds are indicated for the case of a triangular lattice. The graph G on which the dimer sampling is computed is shown by the darker lines
and circular nodes. The gray bands indicate the nested dissection used for these nodes: the lighter gray region contains the dimer separator
A CG and is bordered by the middle two rows of spins, the spin separator D. The darker and medium bands indicate, in order, the subsequent
subdivisions of the sample. (b) A display of the nonzero elements of the Kasteleyn matrix K, for a left-to-right and top-down ordering of the
Kasteleyn cities. The nonzero elements of the 294 X294 Kasteleyn matrix for this are shown as black dots. The edges internal to the
Kasteleyn cities are closest to the diagonal: further nonzero elements represent connections between the cities. (c) The permuted matrix K,
where the cities are indexed according to a nested dissection. The gray regions in K include connections contained within each of the
separators of the nested dissection, with the same shades as in (a), and between the separators and other nodes. The procedure of Pfaffian
elimination can at most affect elements within the gray regions and also the values near the diagonal, for the nodes not contained in the gray
regions in (a). Spin values are assigned to D by examining the part of K~! indexed by the nodes of A, i.e., the lower right square submatrix

contained within the light gray region.

IL,,L(,,. G 7) KL, LT (a,.q,.r,) at each stage. Wilson pre-
sented his sampling algorithm using Gaussian elimination;
we find that Pfaffian elimination both clarifies the algorithm
and makes the programming of the algorithm more direct. A
version of the algorithm that we implemented using Gauss-
ian elimination was much less stable numerically than the
one implemented using Pfaffian elimination.

The factorization of K given by Pfaffian elimination al-
lows the inverse of K to be quickly computed. It is clear from
Eq. (12) that

K'=L"y'L, (13)

where, given the simple form of Y, the inverse of Y is easily
found:

N-1 1
yl=-2 —da¥. (14)
=0 V¢

When the matrix K is created, the indexing of the nodes in
G is chosen according to a nested dissection of the graph G
that maintains the grouping of the Kasteleyn cities. This or-
dering reduces the amount of work needed to carry out the
Pfaffian elimination and is chosen so that the elements of the
separator at each level of the dissection are in a block at the
lower right part of the submatrix organized by that separator.
An example of this ordering, given by the nested dissection,
is shown in Fig. 4.

The core of the dimer assignment procedure is based on
the relationship between restricted partition functions and the

Pfaffian of submatrices of the Kasteleyn matrix. Consider
two partition functions, the entire partition function Z
=Pf(K) and the restricted partition function Z,, which is sum
of weights I1, . g\, x(e) restricted to matchings that include the
fixed partial matching p={q,,r|,...,qx, 7}, with matched
edges (q;,71),-..,(qx,ry). A listing of the terms that contrib-
ute to Z, can be found by removing all nodes in p from the
graph G and computing the Pfaffian of K, the Kasteleyn
matrix for G\p. To find Z,, the weights x of the removed
edges must then be included, giving

2, =Pf(K,) [ x(e). (15)
eep
The weights x(e) are uniform in Wilson’s description al-
though he noted the possibility of variable weights. The
probability P(p) of choosing the edge set p is therefore

_ 2, PHEI, (o)
Plp)="= PEK) (16)

Given that one has already chosen an edge set p that partially
covers a graph, the conditional probability P(p,u|p) of edge
u being in a complete matching that includes p is

Zyu  ZpPEEK)  PEK, )x(w)

“pu _ -
Z,  ZPf(K) Pf(K,,)

P(p,ulp) = (17)
Fundamental relations between determinants and inverse
matrices are used in Wilson’s algorithm to speed up the com-

putation of K,: we directly adapt these relations for Pfaffian
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factorization. Let A be a 2m X 2m skew-symmetric matrix,
and 0=¢ <2m be an even integer, and p={t,,1,,...,t,} be a
subset of indices for the rows (columns) of A. We will use
the notation that A,=A, , , denotes the 2m—€) X (2m
—{€) skew-symmetric matrix given by removing from A all
rows and columns with indices in the set (i;,...,i;). The
notation [A],l,_“,,( will denote the € X € matrix resulting in-
stead from keeping just those rows and columns and elimi-
nating the rest of the matrix. Using this notation and the
result that det(A)=[Pf(A)]?, Jacobi’s theorem [or directly us-
ing the definition of the Pfaffian to show that element i,; of
A~lis (=1)™Pf(A,; ;)/Pf(A)] implies that [44]

Pf(A; i) . .
W‘ + Pf([A ]i,,...,i{(), (18)

where the sign depends only on the choice of the indices
Liyeeeslye

Equations (17) and (18) thus allow one to compute the
probability of matching (g;,r,),...,(qx,r;) using the Pfaff-
ian of the inverse of the Kasteleyn matrix where the same
rows and columns kept. The Pfaffian factorization of this
latter matrix, [K‘l]qurl,_'_qu!,k, can be updated incrementally
as successive choices of matched edges are made. This up-
date allows for the progressive computation of the probabili-
ties P(p,u|p)=x(u)z,(u), where the updated factorization di-
rectly gives the value z;(u)=Pf([K~'], )/PF(K™'],).

Our adaptation of Wilson’s algorithm can now be summa-
rized in outline form:

(1) First, order the points of the decorated dual lattice G in
a manner consistent with the nested dissection. The elements
of the first dual separator A are at the end of this ordering.

(2) Using this ordering, set the values of the Kasteleyn
matrix K, which is stored as a sparse matrix.

(3) Factorize K using Pfaffian elimination. We use a pre-
computed list of elementary operations to carry out the cross
operations for all elements that are potentially nonzero. (Stop
here if only the partition function for U is needed; the parti-
tion function Z is just the product of alternate superdiagonal
elements in Y, i.e., Z=I1}"1y,.)

(4) Using this factorization, compute the elements of K~
that are indexed by elements of A; this is [K~'],, the lower-
right submatrix of K~!' with indices contained in A. (For
some speed up, as suggested in Ref. [17], we only compute
the elements of [K~'], that are needed in the following steps,
at the time those elements are required.)

(5) Assign dimers (g;,7),(g2,72),... along the separator

(a) Choose a node g; € A such all edges that are in-
cident upon ¢, are fully contained in A. Choose among
the potential edges (g;,r;)=e with the probabilities
K(q, ,’”l)Pf(qu,rl)/Pf(K)=K(611 ’rl)Pf([K_l]ql,rl)'

(b) Repeat this last substep, 18, proceeding along the
dimer and updating [K_l]‘ilv’1~-~-ﬂqu’k and its factorization, un-
til no more matchings can be added wholly within the set A.

(6) Use the dimer matching for A to assign spin values in
the spin separator D, which surround the dimer separator A.

(7) Recursively repeat items 1-7 for the subproblems U’
and U".
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Note that, in some cases, an alteration of this procedure
can be used to speed up this method. It might be that faster
results can be obtained using simple floating point numbers
(double precision) rather than multiprecision numbers al-
though they may not provide numerical accuracy to carry out
all of the calculation. A compromise would be to carry out
the computation for only part of the separator at a time,
making the computation more stable. The whole matrix K
with the remaining unchosen nodes is recomputed and the
process is repeated. This method is asymptotically slower but
practical for systems of intermediate size at intermediate
temperature.

A. Entries of K: nested dissection and storage

The Kasteleyn matrix K, as defined in Sec. II, is indexed
by the nodes of the decorated dual graph G. As the entries
K(g,r)==*x(q,r) of K are nonzero only for entries indexed
by neighboring points g and r on the decorated dual lattice,
this O(n) X O(n) matrix has only O(n) nonzero entries. If the
nodes are indexed in a natural, geometric, lattice order, the
Kasteleyn matrix K is simple, as shown in Fig. 4(b). How-
ever, matrix manipulations, such as Pfaffian elimination, for
general matrices might lead to the computation of O(n?) non-
Zero entries.

To compute the correlations between spins on the separa-
tor, the nodes are reordered although kept together in city
groups. In this reordering, the nodes are each assigned a new
index. This reordering satisfies the nested dissection property
that, at each level, the separator nodes in A, which give the
spin subsample U, have the highest index. This implies that
the nonzero values defined by the weights contained within
the separator A are at the lower and rightmost parts of K, at
each level, while the nonzero values for nodes belonging to
U’ and U" [see Eq. (7)] are confined to square blocks about
the diagonal. An example of the distribution of matrix en-
tries, given this ordering of the nodes V of G, is shown in
Fig. 4(c). This organization confines all matrix manipulation
to a portion of the shaded regions of the matrix and to a
narrow band around the diagonal, as unshaded entries away
from the diagonal always have value zero. The shaded re-
gions make up O(N*?) entries although only a subset of even
those entries, growing with N approximately as ~N, possibly
with a logarithmic correction, are used in the Pfaffian elimi-
nation.

Given our specific choice of separator, the nodes of G
corresponding to the Kasteleyn cities always form subse-
quences in the ordering of the nodes. That is, they remain
grouped together. Note that the submatrices for each city are
uniform in structure. This choice of separator A (as all of the
dual nodes between two rows or columns of spins) is not the
most efficient, as slightly smaller separators ACG can be
chosen, but it is a very convenient choice that maintains a
uniform structure.

We use this ordering to construct K as a sparse matrix,
using O(N) operations and time. The sparse matrix storage
scheme is relatively direct (see, e.g., [45] for a discussion on
sparse matrix algorithms and storage techniques). We have
the advantage here that, for the Pfaffian elimination, both the
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(i) 0 1 a b
-1 0 1 c
—a -1 0 1
—b —c -1 0
(44) 0 1 0 b
- -1 0 1 c
0 -1 0 1—ac
—b —c —1+ac 0
(441) 0 1 0 0
-1 0 1 c
- 0 -1 0 1—ac+b
0 —c —1+ac—>b 0
(iv) 0 1 0 0
-1 0 0 0
- 0 0 0 1—ac+b
0 0 —1+ac—» 0

FIG. 5. Example of cross operations used for Pfaffian elimina-
tion. (i) A skew-symmetric matrix K. (ii) The result of a cross op-
eration K — L(a,i,/)KLT(a,q,r) of the first type, with g=0, r=2,
a=-a, applied to K. This is found by adding a=-K(q,r)/K(q,q
+1) times column g+ 1 to column r and then « times row g+1 to
row r to eliminate the element at location (g, r). (iii) The result of
the next cross operation, with g=0, r=3, and a=-b. (iv) The result
of two subsequent operations of the second type, where a(q,r)
=-K(q,r)/K(g,q-1), for g=1, r=2 and g=1, r=3. These latter
types of operation are not needed to compute Pf(K) but are needed
for finding [K~'],. The Pfaffian of K is the product of the superdi-
agonal elements in even rows: here, Pf(K)=(1)(1-ac+b).

locations of the needed elements and the list of operations
using these elements can be precomputed and stored on disk.
This allows us to place the elements of the matrix K in a
linear array with O(N) elements, with the elements ordered
by the step at which they are first needed in the Pfaffian
elimination. This precomputation is independent of both the
data type that we use and the bond strengths for the spin
lattice.

B. Pfaffian factorization

Pfaffian elimination and the concomitant factorization of
K proceed by the elimination of elements by cross opera-
tions. There are two types of cross operations that are carried
out. The first type of operation eliminates all but the first of
the nonzero entries in an even row. This is done for an even
row ¢ by using [see Eq. (9)] a(q,r)=—K(q,r)/K(q,q+1) for
all r=¢g+2. The second type eliminates all entries in odd
rows. This is done for odd i using a(q,r)=—K(q,r)/K(g
—1,q), with r=gq. Examples of operations of each type are
traced out in Fig. 5.

We note that in carrying out Pfaffian elimination, a poten-
tial danger would be that one of the even-row superdiagonal
elements, K(g,q+1) with g even, is zero. In this situation, it
would be necessary to do a pivoting operation, which would
destroy the nested dissection. However, given that the Kaste-
leyn cities remain grouped together, the sequential pairing of
nodes (0,1), (2,3),... is always a matching. Hence the Pfaff-
ian of any upper left portion of the Kasteleyn matrix, as we
have arranged it, is nonzero, as the Pfaffian counts matchings
(in a weighted fashion), and there is always a matching for
the upper left portion of the matrix of unit weight. This im-
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plies that all superdiagonal elements in the even rows must
be nonzero. This provides a “built-in” version of the permu-
tation of nodes to accommodate a matching that is given in
Wilson’s paper [17]. In the periodic case (Sec. IV), for cer-
tain boundary weight choices at 8=0 (T'=), when the bond
strengths have uniform magnitude, there can be “accidental”
cancellations which will cause this procedure to fail as the
signed weight of a submatching can be exactly zero even
though the Pfaffian is nonzero. In this case, permutation of
the remaining elements of the matrix (i.e., “pivoting”) would
be needed to remove a zero from the superdiagonal and ob-
tain the correct factorization.

The factorization found by Pfaffian elimination [Eq. (12)]
then allows for the easy computation of the partition function
for the given sample, at the temperature used to set the ele-
ments of K, if desired. The Pfaffian of the original Kasteleyn
matrix is simply the product of the even superdiagonal ele-
ments of Y,

N-1

PI(K) = 11 . (19)
=0

Note that this is the procedure, computation of the Pfaffian of
K using nested dissection, used by Galluccio et al. [25] to
compute the partition function. In that work, to compute the
partition function at a given temperature, the arithmetic is
carried out modulo prime integers for a selection of prime
integers. The partition function at that temperature is then
reconstructed by application of the Chinese remainder theo-
rem. The whole partition function as a function of 8 can be
found by polynomial interpolation in exp(—g). This full cal-
culation works only if the couplings J;; are restricted to small
integer values, typically J;;= = 1.

C. Sampling: Inductively factorizing K

At this point, though one has the partition function (from
the even superdiagonal elements of ¥), sampling spin con-
figurations requires a bit more work. The sampling can be
carried out by using only the lower right hand corner [K~'],
of K~!. This part of the matrix encodes all the correlations
between the spins in D, on the separator of the sample, via
the correlations of dimer coverings of A. These correlations
are used to make dimer (and then spin) assignments along
the geometric separator. The description in this subsection is
based upon Wilson’s description and notation [17], only with
a change in the factorization method (Pfaffian vs Gaussian).

To assign a dimer covering inside the separator A, the
algorithm proceeds through each of the edges in G that are
wholly contained within the node set A and computes the
probability that edge is covered by a dimer, conditioned on
earlier assignments of dimers in the separator. The algorithm
proceeds inductively by calculating the probabilities for plac-
ing the (k+ 1)st dimer using the results of the calculations for
the previous k edges in A, p={(q;,r1),....(qx.r)}-

The inductive computation of the probabilities are based
on Eq. (17), which in turn requires the computation of the
ratio Pf(K), ,)/Pf(K),). This ratio is found from the change in

the Pfaffian of [K_{)]qpr|»-~-»wk that results from the augmen-
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tation of [K~!] by two rows and columns, those with indices
Grs+1 and rp,; in K1, To calculate this change, the algorithm
maintains a factorization of A;=[K~'], which is tentatively
updated to test the addition of an edge. This factorization
allows for the ratios of Pfaffians to be quickly computed. The
matrix [K~'], is first found by computing a subset of the
rows and columns of K~! using Eq. (14) and the Pfaffian
factorization of K, Eq. (12).

To select matched edges within A, one considers in turn
nodes g € A such that all neighbors r of ¢ are also in A and
selects one of these neighbors with the correct probability.
When considering matches for such a node g, , assume that
one has already selected k dimers in A, as part of a sampling
inside A, and that one knows the matrices M, and V, in the
factorization

MAM; =V, (20)

where all matrices in this equation are of dimension 2k
X2k, M, is lower triangular, and V; has the same superdi-
agonal structure as Y. For a given trial edge (g, ,7te1), WE
can tentatively extend the matrices M, and V) to M, ; and

Vk+1’ with
M, O
M, = (21)
My
and
Vi 0O
Vier = , (22)
0 v
where v;+1 is a 2 X2 antisymmetric matrix,
0 z
V= |: k+1 :| (23)
—Zg O

and my, is a 2 X 2k matrix. To compute these trial solutions
M., and V,, one first tentatively updates A, ,

A, —-al
Ak+l - |: k k+1 :|, (24)
Are1 bra

using the rows and columns indexed by ¢;,; and r;,; from
[K~'], to fill in A;,, and reading off a;,, and b,,,. Direct
matrix multiplication and requiring Eq. (20) for A, then
give

M) == ApAy == aa MV M, (25)
and that
Zpa1 = b +ak+1Ml€V;1Mka17<-+l' (26)

As Pf(Ap=Il,_; ,z; the factor z;,; is the ratio
Pf(A,;)/Pf(A;) of the Pfaffians that is needed to apply Eq.
(17). Hence, this update in the factorization allows us to find
the probability x, , Zks1(qrs1.7141) Of selecting the spe-
cific edge (gpsi>7k+1) to augment the matching. Once we
have chosen a match for g, , we then update A; to A, from
K7, V, using z;,,, and M, using Eq. (25). This process is
repeated until a maximal (though usually not complete)
matching within A is obtained. With our choice of Fisher
cities, there are only two candidates r;,; for each g;,; when
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FIG. 6. (Color online) An example of the dimer assignment
procedure for a separator A that is three cities wide. Initially, no
edges are matched (left part of k=0). The first choice, k=0, is
between the two edges inside A that are incident upon the far left
node. In the example shown, the lower bond (connecting node 0 to
node 2; see Fig. 3) is chosen, as shown on the left of the k=1
section of the figure. At this stage, one has computed matrices A,
M, and V. The comparison of the next two possible matchings,
shown on the right part of the k=1 subfigure, compares the inclu-
sion of the (g,r)=(3,5) and (3,4) edges. In some cases, as in the
first k=3 panel, a choice is forced and A;, M, and V; need not be
updated. The k=4 choices are forced as an even number of domain
walls must cross the separator so that an even number of the top
nodes and an even number of the bottom nodes are unmatched.

using fixed boundary conditions; for periodic boundary con-
ditions (Sec. IV), matching the initial node ¢;=0 requires the
comparison of three choices. Note that not all the z need be
computed as the total probability sums to unity; when con-
sidering two choices, considerable time is saved by comput-
ing the probability of only one of the choices. An example of
dimer assignment is depicted in Fig. 6.

The results derived by Wilson for the bounds on the num-
ber of steps using Gaussian elimination carry over directly to
the approach using Pfaffian elimination. The maximal size of
the separator is of order O(L)=0(n"?). There are O(n*?)
operations in the dimer assignment for the largest separator:
matching a single dimer requires at most O(n) steps due to
the multiplication of matrices of size 2 X O(n'?) by matrices
of size O(n'?) X 0O(n"?), and there are O(n'?) matchings in
each separator. Calculating K~! also requires O(n*?) steps.
As the smaller separators decrease in size geometrically, as
the sample is subdivided, the number of operations for each
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FIG. 7. (Color online) Application of the result of the example
dimer assignment from Fig. 6 to the spin assignment. (a) The initial
spin configuration with fixed spins on the boundary. The portion of
G used to compute K, [K~'], and the dimer assignment is indicated
in gray. The middle row of Fisher cities composes A, the dimer
separator. (b) The sample dimer assignment (partial matching) for A
from Fig. 6 superimposed on G. (¢) Extra choices in the matching
are forced by the matching internal to A. These additional dimers
cut across the bonds separating spins in D, the two spin rows par-
allel to A. (d) In the last step, the modifiable spins are updated. The
update is based upon the portion of domain walls forced by the
partial matching in (c). Moving from left to right, for example, from
the two fixed spins on the middle of the left side, a spin is reversed
if an odd number of dimers extending from A are crossed.

of the smaller separators decreases geometrically, and the
sum of steps over all levels of the nested dissection gives a
total of O(n*?) arithmetic steps to generate a random assign-
ment. The running time then is a product of the time per
operation, which depends on the needed precision, and this
number of steps. As discussed in more detail in Sec. Il E,
the running time grows roughly linearly with the precision:
the necessary precision grows only slowly with n but propor-
tionally to B.

Once all nodes in the separator A have dimers associated
with them, the broken bonds along the strip D of the Ising
system are found from the locations of the dimers between
these cities and the neighboring ones. We can then directly
assign the spins along the strip. An example of such a spin
assignment is displayed in Fig. 7.

D. Verification

The structure of the calculation is rather complex so we
verified our implementation of the algorithm in several ways.
We checked exact partition function calculations for pure
systems against the results of our computation. Exact enu-
meration for pure and disordered samples in systems up to
n=5% was used to predict sampling probabilities: we then
used our code to generate over 10° samples and compared
the sampled probability distribution with the exact calcula-
tions. These were in statistical agreement. Each author of this
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paper developed a code independently: these were compared
on the same Gaussian spin-glass samples of size 33% and
found to generate the same distribution for configurations, at
low temperatures, also consistent with the Boltzmann distri-
bution for total energy. At low temperatures, the sampled
configurations approached those of the ground-state configu-
rations (which were predicted using an independent ground-
state code based on combinatorial optimization methods
[18,40]).

E. Data types and timing

Our code is constructed so that the data type of matrix
elements can be any field (double precision numbers,
multiple-precision numbers, or exact rationals, for example).
This allows us to check the effects of the choice of numerical
type on the accuracy, stability, and running time of the sam-
pling algorithm. For higher precision variables, we use the
GMP library [46] for exact rational arithmetic and either the
MPFR [47] extension to GMP or the GMP library itself for
multiple-precision floating point arithmetic. We find that the
latter two floating point types give comparable performance
and accuracy. Using exact rationals allows for mathemati-
cally exact sampling, but results in a temperature-dependent
slowdown by a factor of 10 or 100 over the range of tem-
peratures, 7=0.1 to 7=1, we used while comparing rationals
with floating point calculations.

The edges u are chosen by comparing the probability
P(p,u|p) with a random number chosen in the interval
[0,1). The sequence of random numbers and computed prob-
abilities determines the spin configuration selected. We de-
termine the needed precision for a given sample and tem-
perature by demanding that the result of a specific
assignment be independent of the precision for a given se-
quence of random numbers. Note that using this precision
does not give the exact values of the probabilities at each
stage of the computation, but the sampling does not change
at increased precision. If a number in the sequence happens
to be extremely close to the computed probability, higher
precision arithmetic could be required.

Results of our tests for needed precisions are summarized
in Fig. 8, where we plot the number of bits needed, deter-
mined by bisection in the number of bits, averaged over ran-
dom number sequences and disorder. We find that the distri-
bution of the required number of bits is not very broad,
regardless of temperature and disorder realization J. Less
than 107* of the attempts require more than double the aver-
age precision to find the correct sampling. Hence fixing the
precision at two to three times the average value will almost
guarantee an exact sampling.

For high temperatures (of order T=1), low precisions
(i.e., fixed double precision variables) are sufficient for the
system sizes we study (see Fig. 9). For lower temperatures,
higher precisions are needed. The needed precision is well fit
by a linear growth in S, for $>0.5. This is consistent with
the expectation that, as the weights vary as exp(—8J), the
number of bits needed to describe the weights grows linearly
with S for fixed typical values of J. The number of needed
bits grows only slowly with L. This is consistent with the
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FIG. 8. (Color online) The plot shows the sample averages of
the number of bits of precision B, required to obtain the correct
sampling, for system sizes n=L?>=6> through 126> with fixed
boundaries, as a function of inverse temperature B3, for Gaussian
disorder. The lines indicate linear fits of the form B,,,=cpB. The
number of bits needed for periodic boundary conditions (not
shown) are very close to these same lines, at each system size. To
find an accurate result with high confidence, one can use twice the
average needed value: this was sufficient for all samples (>10%)
that we examined.

structure of the sampling and Pfaffian computation, which
are hierarchical in structure, so that the accumulated error
grows only slowly with L.

For systems up to size 642, 600 bits of precision are suf-
ficient for temperatures 7> 0.1. For larger systems and lower
temperatures, more bits are needed. For example, we use
2048 bits to reliably sample configurations at =25 and
L=128.
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FIG. 9. (Color online) Run time, measured in seconds, to gen-
erate a single configuration, as a function of system size L, using a
2.4 GHz Intel Core 2 Duo processor (MacBook Pro). Double pre-
cision (64 bit floating point) data are indicated with triangles, while
multiprecision results for B=512, 2048, and 8192 bits are indicated
by squares, diamonds, and circles, respectively. Samples are gener-
ated for L =128 with fixed boundaries (closed symbols) and for L
=64 with periodic boundaries (filled symbols). The sample-to-
sample fluctuation of disorder realization is less than 0.1% of the
run time so error bars are not shown. The solid line indicates the
form of the expected dependence of run time on system size for a
given fixed precision, that is, ~L>.
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We collected timing data for the performance of our algo-
rithm as a function of system size and temperature. These
data are summarized in Fig. 9. We find that sampling with
periodic boundary conditions (Sec. IV) takes approximately
5.5-6.5 times longer than sampling with fixed boundary con-
ditions. The needed precision and running times for *J dis-
order are very close to those shown in Figs. 8 and 9. For
64 <B <512, the run time to sample a configuration varies
only slowly with B, approximately by a factor of 1.5 over
this range. For higher precision, the running time grows
somewhat faster than linearly with B and hence somewhat
faster than linearly with .

IV. PERIODIC BOUNDARY CONDITIONS

Fixed boundary conditions are appropriate for patchwork
dynamics, but, for other simulations, other boundary condi-
tions, may be useful. One simple way to implement open
boundary conditions is to set to zero all the J;; connecting
interior to boundary spins. For cylindrical samples with open
boundaries, we use a “separator” which does not actually
separate the graph, but one that slices the sample perpendicu-
lar to the circumference of the cylinder, resulting in a simple
planar graph with fixed boundaries. Toroidal graphs require a
more complicated sampling scheme, as they are not planar.
In general, for a graph of genus g, the partition function of
the dimer problem may be calculated exactly by summing 4¢
Pfaffians [48]. The reasoning behind this summation can be
adapted to sampling for periodic spin lattices.

A. Partition function on the periodic lattice

The Kasteleyn matrix approach for computing Z can be
extended to handle the periodic case by adding connections
between cities that complete the periodic boundaries, con-
verting the planar square sample to a toroidal one, but the
direct correspondence between dimer configurations and spin
configurations is affected. On the torus, topologically non-
trivial domain walls must always come in pairs or the spin
configuration cannot be consistently defined. But the match-
ing problem allows for odd numbers of loops to wrap around
the torus on either axis. For 7=0 ground states, one can
decide to ignore this fact and allow variable boundary con-
ditions, which allow for an odd number of domain walls
relative to other boundary conditions. Choosing the bound-
ary condition and spin configuration that jointly minimize H
gives the extended ground-state construction [19]. At finite
temperature with fixed boundary conditions, however, we
need to arrange for the cancellation of dimer configurations
which would imply an odd number of domain walls that
wrap around either axis.

This cancellation is achieved by summing over four Pfaf-
fians, in a fashion similar to that developed for the primal
lattice [19], though the details differ for the dual lattice. The
four Pfaffians correspond to four possible choices of sign for
the elements of K(g,r) that complete the periodic connec-
tions. That is, the values of K(g,r) for edges that connect
the last column to the first column (that wrap around in
the x direction) are uniformly set to one of two choices,
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TABLE 1. A table of the signs for different combinations of
spanning loop parities in the dimer model for each of the four
Pfaffians K== for the torus. The set of loops found from a dimer
configuration can have a total wrapping number that is odd (o) or
even (e) number along either the horizontal or vertical directions.
This gives four possible classes of dimer configurations (e,e),
(e,0), (0,e), and (0,0). For the dual mapping used here, the physi-
cal spin configurations for the Ising model are restricted to those
with an even number of domain walls wrapping in both directions,
i.e., the (e,e) class. The four classes of dimer configurations are
summed in each Pfaffian of the four Kasteleyn matrices, K==, with
a sign that depends on the class and the matrix. These four matrices
assign different signs to the weights of the dual edges that connect
the boundaries together, with a + or — sign for each of the two types
of boundary connections, i.e., horizontal or vertical. Applying this
table, we get the partition function for the valid dimer configura-
tions by the sum Z=[Pf(K**)+Pf(K*")+Pf(K*)+Pf(K)]/2,
which counts only the (e, e) class of dimer configurations. This sum
differs from the more commonly studied case, the dimer model
using cities on the primal lattice, where all classes of matchings are
valid  configurations and  Z=[-Pf(K**)+Pf(K*")+Pf(K™*)
+Pf(K~7)]/2 gives the sum over (e,e), (0,e), (€,0), and (e,e).

Pf(K*) Pf(K*) Pf(K™) Pf(K™)
(e.,e) + + + +
(0,e) - - + +
(e,0) - + - +
(0,0) - + + -

+exp[—Bw(g,r)], and the values for the edges that connect
the last row to the first row (that wrap around in the y direc-
tion) are also uniformly set, independent of the choice for the
x-wrapping bonds, again to *exp[—Bw(q,r)]. This gives
four matrices, K**, K=, K*~, and K~~. The dimer configura-
tions that are summed up in the Pfaffians enter with different
relative signs, depending on how many times the matchings
wrap around each axis, as the parity of the windings affects
the sign of the dimer configurations when the negative sign
is chosen for the periodically-connecting edges. The effects
of these signs are tabulated and explained in Table I. The
sum of the Pfaffian of these four matrices then gives twice
the partition function as those dimer configurations with an
even number of wrapping loops enter four times and those
with an odd number, in either direction, are cancelled out,
and there is a two-to-one mapping of spin configurations to
domain walls in the periodic case (due to global spin-flip
symmetry).

B. Matching probabilities for the torus

There are several simple possible choices for a nested
dissection for toroidal samples of dimension L X L. The num-
ber of cities is the same as the number of variable spins, i.e.,
L?. We chose to use a horizontal strip of length L in the first
row of cities, which fixes the spins in the first two rows,
followed by a vertical strip in of length L—1 in the first
column, which fixes the first two columns of spins, followed
by a sampling the remaining (L—1) X (L—1) cities, i.e., a
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sampling of the remaining (L—2) X (L—2) spins using the
already determined spins in the first two columns and rows
as fixed spin boundary conditions. The first two ‘“‘separators”
do not divide the sample into separate pieces but instead
provide for the cutting of loops that wind around the torus in
two stages.

For the first sampling, the periodic horizontal row, one has
to sample using four Kasteleyn matrices in parallel. For the
second sampling, on a cylindrical geometry, one needs to
find probabilities by summing over two Kasteleyn matrices
K* and K~ in order to eliminate domain walls that wrap
around the cylinder an odd number of times. We can consider
both cases as specific examples of a general problem: sam-
pling using multiple Kasteleyn matrices simultaneously.

For this general case, consider a partition function Z that
is found by summing the Pfaffian over matrices K¢, with
weights ¢, (e.g., a=** and qa:% for toroidal boundary
conditions). The partition function is then

Z=> q.K" (27)

The computation of probability of selection is more compli-
cated than for the case of a single K. For each K%, we con-
sider the inverse indexed by elements of the separator A,
[(K*)~']. and inductively factorize [(K*)~'], for our current
choice of sampled edges p={e;,...,e;}. The conditional
probability of choosing edge e;,;, simplifying the notation
by writing u for e;,; and using z%(e) to denote z;’ for edge
e=(qy,ry), is then given by

P(p.ulp) = ZZ,,_ _ quan(K;‘Z)Eeep,uj“(e)
» o PIE)I, c x%(e)

S PHIKD ], JPRKOL, i (e)

Sl PALK) ] PEEIL,  x*(e)

_ 2oqPIKN, ¢ 2% (€)x(e)

T 3,qPEEN, 2 (e)x (e)

 2olalp)z(w)x(w)

RS AT (28)
where

L) =PEKN]] xe)2(e) (29)

cep )|

This extra weighting quantity, £,(p), is not needed for planar
samples due to cancellations but is required here to allow for
the different p-dependent weightings resulting from the dis-
tinct boundary conditions. It incorporates the weight of the
whole K“ matrix, the modification of those weights by the
factors of z%(e) resulting from the choice of edges in p, and
the sign of the weights (the magnitudes are identical in each
a for a given choice of p and hence cancel out). This weight-
ing factor can be updated at each stage k along with the set of

. M}, and A} for each a. In the case of the periodic lattice,
these four sets of matrices are updated and used to compute
the values of z*(e) to find the conditional probabilities.
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FIG. 10. Relative domain walls found in an individual 2D Ising
spin-glass sample with 642 spins, periodic boundary conditions, and
unit variance Gaussian disorder, for temperature 7=0.16. The bond
satisfaction probabilities were estimated by averaging over 660
samples. As in Fig. 1, the lines indicate the probability of relative
domain walls between two configurations: the darkest lines indicate
where the bond dual to that domain wall has a nearly 50% chance
of opposite or equal relative orientations; where there is no line or a
light line separating two spins, the two spins have a very high
probability of a single relative orientation, either aligned or
opposite.

C. Sampling spins

The dimer assignments are carried out on G for the peri-
odic case using Eq. (28). To finally carry out the sampling on
the torus, one first arbitrarily sets the value of an initial spin,
the spin at the upper left corner, i.e., at location (0,0). The
spin at the left side of the second row, at location (1,0), is
fixed by the first element of the matching for the first sepa-
rator. This is the exceptional case for this lattice where one
has three choices for the matching edge on G [(0,1), (0,2),
and (0,6L-2)]. After this choice has been made, the rest of
the spins in the first two rows are then assigned as in the
fixed boundary case. An example of the relative domain-wall
density for a 642 periodic sample is displayed in Fig. 10. This
plot shows the variance w;;(1- ;) in the bond satisfaction,
where u;; is the probability of a given bond being satisfied,
ie., s;5J;;>0.

D. Running time

We find that the number of bits required for the periodic
case increases only by a small amount, about 1%, over the
planar case for samples of the same size. Carrying out the
initial Pfaffian elimination for single « for the entire sample
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is slower than for the planar case as there are about four
times as many operations, but this computation requires only
a small fraction of the time in any case. However, as the
periodic case requires the maintenance of four V;, A;, and M,
matrices, sampling in the periodic case is slower than for the
fixed boundary case. We find that sample generation is about
5.5 times slower for periodic samples, compared with planar
samples, for L=16 through L=64.

V. CONCLUDING COMMENTS

In this paper, we have described an algorithm that gener-
ates spin configurations for the 2D Ising spin glass, where
the samples generated are directly selected according to the
equilibrium probability distribution. This method follows
from Wilson’s dimer sampling algorithm although we have
modified the matrix algebra for speed and simplicity and
have adopted the dimer matching to the study of the Ising
spin glass. We have also generalized the method to periodic
samples.

We note that as the inverse Kasteleyn matrix contains the
dimer-dimer correlation functions along the separator, one
need not carry out all of the sampling steps to compute
domain-wall densities. One can directly examine the inverse
on the separator to find the domain-wall densities on a single
separator by stopping at step 18 of the outline in Sec. III. The
separator can then be changed to compute the bond satisfac-
tion probabilities in each row of the sample. Sampling con-
figurations provides more information, but if the bond satis-
faction variance is all that is needed, this approach is more
precise and is not unreasonably slow.

This algorithm can also be used to directly and uniformly
sample ground states in the 2D *J spin-glass model. At low
enough temperatures (on the order of 7=0.1), the ground
states occur frequently as can be confirmed by their energies
being lowest or by comparison with a ground-state energy
found by combinatorial optimization. The statistics of the
ground-state configurations can therefore be directly sampled
(by rejecting other states when they occur), exactly, using
this algorithm.

Our implementation of the sampling algorithm is efficient
enough to allow for rapid enough sampling to study finite
temperature patchwork dynamics out to patch sizes ¢ of at
least €=32. Large numbers of samples can be comfortably
generated for L=64 and 7<<0.01 or for L=128 and 7=0.04.
This should allow for more conclusive studies on the Gauss-
ian and *J spin-glass problems in two dimensions.
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